4723 Core Mathematics 3

1 (i)	Obtain integral of form $\mathrm{ke}^{-2 x}$ Obtain $-4 \mathrm{e}^{-2 x}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	any constant k different from 8 or (unsimplified) equiv
(ii)	Obtain integral of form $k(4 x+5)^{7}$ Obtain $\frac{1}{28}(4 x+5)^{7}$ Include $\ldots+c$ at least once	M1 A1 B1 5	any constant k in simplified form in either part
2 (i)	Form expression involving attempts at y values and addition Obtain $k(\ln 4+4 \ln 6+2 \ln 8+4 \ln 10+\ln 12)$ Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \\ \text { A1 } & \\ \text { A1 } & 4 \end{array}$	with coeffs 1,4 and 2 present at least once any constant k or unsimplified equiv or 16.3 or greater accuracy (16.27164...)
(ii)	State 162.7 or 163	$\begin{array}{r} \text { B1 } \sqrt{1} \\ \boxed{5} \end{array}$	following their answer to (i), maybe rounded
3 (i)	Attempt use of identity for $\tan ^{2} \theta$ Replace $\frac{1}{\cos \theta}$ by $\sec \theta$ Obtain 2 $\left(\sec ^{2} \theta-1\right)-\sec \theta$	M1 B1 $\text { A1 } 3$	using $\pm \sec ^{2} \theta \pm 1$; or equiv or equiv
(ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ Relate $\sec \theta$ to $\cos \theta$ and attempt at least one value of θ Obtain $60^{\circ}, 131.8^{\circ}$ Obtain $60^{\circ}, 131.8^{\circ}, 228.2^{\circ}, 300^{\circ}$	M1 M1 A1 A1 4 7	as far as factorisation or substitution in correct formula may be implied allow 132 or greater accuracy allow 132, 228 or greater accuracy; and no others between 0° and 360°

4 (i)	Obtain derivative of form $k x\left(4 x^{2}+1\right)^{4}$ Obtain $40 x\left(4 x^{2}+1\right)^{4}$ State $x=0$	M1 A1 A1 $\sqrt{ } 3$	any constant k or (unsimplified) equiv and no other; following their derivative of form $k x\left(4 x^{2}+1\right)^{4}$
(ii)	Attempt use of quotient rule Obtain $\frac{2 x \ln x-x^{2} \cdot \frac{1}{x}}{(\ln x)^{2}}$	M1 A1	or equiv or equiv
	Equate to zero and attempt solution	M1	as far as solution involving e
	Obtain $\mathrm{e}^{\frac{1}{2}}$	$\begin{array}{rr} \text { A1 } & 4 \\ & 7 \end{array}$	or exact equiv; and no other; allow from \pm (correct numerator of derivative)

(i) Refer to stretch and translation

State stretch, factor $\frac{1}{k}$, in x direction

M1 in either order; allow here informal terms
A1 or equiv; now with correct terminology

State translation in negative y direction by a1 $\mathbf{3}$ or equiv; now with correct terminology [SC: If M0 but one transformation completely correct - B1]
(ii) Show attempt to reflect negative part
in x-axis
Show correct sketch

M1 ignoring curvature
A1 2 with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point
(iii) Attempt method with $x=0$ to find value of a M1

Obtain $a=14$
Attempt to solve for k
Obtain $k=3$
... other than (or in addition to) value -12
and nothing else using any numerical a with sound process

8 (i) Attempt to express x or x^{2} in terms of y
Obtain $x^{2}=\frac{1296}{(y+3)^{4}}$
Obtain integral of form $k(y+3)^{-3}$
Obtain $-432 \pi(y+3)^{-3}$ or $-432(y+3)^{-3}$
Attempt evaluation using limits 0 and p

Confirm $16 \pi\left(1-\frac{27}{(p+3)^{3}}\right)$

M1
A1 or (unsimplified) equiv
M1 any constant k
A1 or (unsimplified) equiv
M1 for expression of form $k(y+3)^{-n}$ obtained from integration attempt; subtraction correct way round

A1 6 AG; necessary detail required, including appearance of π prior to final line
(ii) State or obtain $\frac{\mathrm{d} V}{\mathrm{~d} p}=1296 \pi(p+3)^{-4} \quad$ B1 \quad or equiv; perhaps involving y

Multiply $\frac{\mathrm{d} p}{\mathrm{~d} t}$ and attempt at $\frac{\mathrm{d} V}{\mathrm{~d} p} \quad * \mathrm{M} 1 \quad$ algebraic or numerical
Substitute $p=9$ and attempt evaluation
Obtain $\frac{1}{4} \pi$ or 0.785

M1 dep *M
A1 $\mathbf{4}$ or greater accuracy
10

9 (i) State $\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta$
B1
Use at least one of $\cos 2 \theta=2 \cos ^{2} \theta-1$
and $\sin 2 \theta=2 \sin \theta \cos \theta$
B1
Attempt to express in terms of $\cos \theta$ only $\quad \mathrm{M}$
using correct identities for $\cos 2 \theta, \sin 2 \theta$ and $\sin ^{2} \theta$

Obtain $4 \cos ^{3} \theta-3 \cos \theta$
A1 4 AG; necessary detail required
(ii) Either: State or imply $\cos 6 \theta=2 \cos ^{2} 3 \theta-1$ B1

Use expression for $\cos 3 \theta$ and
attempt expansion M1
Obtain $32 c^{6}-48 c^{4}+18 c^{2}-1$
Or: \quad State $\cos 6 \theta=4 \cos ^{3} 2 \theta-3 \cos 2 \theta$
Express $\cos 2 \theta$ in terms of $\cos \theta$
and attempt expansion
Obtain $32 c^{6}-48 c^{4}+18 c^{2}-1$
for expression of form $\pm 2 \cos ^{2} 3 \theta \pm 1$
3 AG; necessary detail required
maybe implied
for expression of form $\pm 2 \cos ^{2} \theta \pm 1$
A1 (3) AG; necessary detail required
(iii) Substitute for $\cos 6 \theta$

Obtain $32 c^{6}-48 c^{4}=0$
*M1 with simplification attempted

Attempt solution for c of equation
Obtain $c^{2}=\frac{3}{2}$ and observe no solutions
A1 or equiv
M1 dep *M

Obtain $c=0$, give at least three specific angles and conclude odd multiples of 90

A1 or equiv; correct work only
A1 5 AG; or equiv; necessary detail required; correct work only

